Skip to main content

The Egg Game



89 eggs.

In order to see this, look at the smallest way possible to guarantee a win; you leave me with 101 eggs. If I take 1 egg, you take all 100; if I take 100 eggs, you take the last one. Therefore you would always win.

If you try with 202, I can take from 1 to 100, so there is 201 to 102 left. Then you would take 100 or 1 egg(s) in order to leave me with 101 again. By simple analysis, you must take 101 eggs over two rounds in order to get down to 101.

19*101 = 1919, so we must take 2008-1919 = 89 eggs to start off with a multiple of 101.

Comments

Popular posts from this blog

Chris's Birthday

  If today is January 1st, and December 31st was Chris' birthday and she turned 8, and on December 30 Chris was 7, and this year Chris will turn 9, then next year Chris is turning 10.

What are we?

    The number 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0 on a US keyboard when you hold the shift button down.

Murder!!!

   Ans : 16 Name the 10 people with letters: A, B, C, ... and so on. A through F each call any one of G, H, I, or J (it doesn't matter which one). That makes six calls so far. Then G calls H and I calls J, after which G calls I and H calls J. Now we've used 10 calls, and G, H, I, and J all know everything. Finally, each of A through F is called by someone in G through J - 6 more calls to get everyone knowing everything. 16 calls in all.